
Buletinul Ştiinţific al Universităţii "Politelmica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICATII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 47(61), Fascicola 1-2,2002

A Study Regarding the Implementation with VHDL of a

Multiple Clock Gating Scheme for Low Power RTL Design

Alin Tisan l
, Stefan Oniga2

, Daniel Mic" Ciprian Gavrincea1

Abstract - In this paper we propose an algorithm,
implemented with VHDL language in RTL design,
capable of reorganizing the f1ip-flops from within a
circuit in order to reduce the power consumption
through optimal c10ck distribution. Practically in the
end, starting from this algoritbm, we will model the
clock bebavior in a sequential circuit. Experimental
results show tbat these designs have ideal logic
functionality witb lower power dissipation compared to
traditional designs
Keywords: VHDL, FPGA, power optimization

I. lNTRODUCTION

With the increasing size and complexity of
Field Programmable Gate Arrays (FPGA), clock
distribution has becom'~ an important issue. It has
become increasingly difficult to maintain high clock
rates as the complexity and size of circuits
implemented constantly grow. Clock managers are
being incorporated in FPGAs [1, 2, 3] to solve c10ck
distribution problems, and to improve their flexibility
and functionality. Clock managers can be used in
many FPGA applications. Using the frequency
multiplication and division features, designers are
able to manipulate the clock rates on- and off-chip,
and use it for clock alignment among subsystems that
use different clock rates.

An important problem of the modem digital
systems is the power dissipation growing due to the
increasing of clock frequencies and the decreasing of
the feature sizes. For the reason that, the clock
distribution network consumes large percentage (20%
- 50%) of the power consumed by these systems, we
will focus on trying to reduce the dynamic power
cOllsumed by the module c1ocked, lik:e flip-flops,
through selectively stopping the clock at these flip
tlops that do not need it for changing his output value.
Basically with the algorithm proposed we will group
these flip-flops that have tile maximum common
transitions, the flip-flops with the very similar activity
pattern.

I.Teaching Assistent
2. Lecturer Eng.

Uniycrsitatea de Nord Ba'a Mare Facultltca de Inginerle,

Depa....tamentulElectrotehnica, str. V. Babes nr 62A

e-mail atisa'l.@ul:-m.;'J

Thţ power consumed by complementary
metal-oxide-semi-conductor (CMOS) circuits
consists [2] of two components: dynamic and static
power. The static power is Iargely determined by the
technology. In this paper, we only consider
minimizing the dynamic power. The dynamic power
consumed by a module clocked at a frequency, rp is

given by, rpV2Cr where V is the supply voltage and

Cr is the total load capacitance on the circuit. If a
circuit switches A times per c10ck cycJe, then its

power consumption is given by, P = ArpV2Cr where

A is caUed the circuit activity. To minimize the power
consumed by a CMOS synchronous system, we would
in tum like to minimize its total activity. In a normal
c10ck tree, the dock signal arrives regularly at alI of
the clock sinks, which means A =1. Suppose that we
know the times at which the clocked sinks must be
active. We refer to the set of active/idle times for the
module as activity patterns. They can be obtained by
simulation of the design at the behavioral level. The
clock signal must be supplied to the modules only
during their active times. If the clock signal is gated
such that it is only delivered during these times we
can reduce the total power consumed by the clock and
by the modules them-selves. We caU a clock tree thus
constructed an activity-driven clock tree. In this paper,
we address the problem of minimizing the power
consumption of a synchronous system by minimizing
its activity through the use of an activity-driven clock
tree.

The circuits designed by describing them in a
behavioral language like VHDL, are synthesized
(using a synthesizer like Leonardo Spectrum) into a
gate level VHDL netlist. The activity pattern of ali
flip-flops from the RTL design was got from a vector
file format obtained after a simulation of the VHDL
netlist in the most common functionally conditions of
the circuit. The choosing of the input' s test vectors is
very important because it will persuade the grouping
into the unique best mode ofthe flip-flops.

mailto:atisa'l.@ul:-m.;'J

-----------------_........'.............. ~-_._~--~

II. THE CIRCUIT TRANSFORMATION

As de5cribed iu the introduction the basic
idea of the transformation is to switch the clock of
flip-flop5 that take their own data. With this algorithm
we will try to give to the flip-flop a "c1ock" only
when it need too, Jo be precise only when the input
data 1s changing. ' 1 have named this special clock:
ideal dock.

Clock gating is a transformation that is
performed on a sy:nchronous digital circuit. For each
flip flop in the~ circuit, the hold condition i5
determined, Le. the condition under which the value
that is cIocked into the flip flop i5 identical· to its
current value. Under this condition, a transition on the
clock iuput of the flip flop can be suppressed without
changing the circuit's behavior. Such a modified clock
is called a gated clock.
Since gating a cIock involves a latch, and thus area
overhead and extra power dissipation, flip-flops with
similar hold conditions are grouped to be clocked by
the same gated clock. Power reduction is achieved if a
gated clock governs enough flip flops with a
combined hold condition that 1s often true,

The tested project has 12 flip-flops (flip
flops) and was choused because of the simplicity of
pursuing the results.
After functional simulation we have got the waveform
(test vectors) that we have exported them as ASCII
format. Using a program written in Pascal we turned
the previous file iuto another one that describes each
flip-flops activity pattern, means idle (O) or active
period (1) of flip-flops (FF), fig. 1.

Transitions
Ck FF1 FF2 FF3 FF4 FF5 FF6 FF7 FFa FF9 FF10

1 O 1 1 O 1 1 1 O O 1
2 1 1 1 1 O O 1 1 1 1
3 1 O O O O O 1 O 1 1
4 O O 1 1 1 1 O O 1 O
5 1 1 O 1 1 1 O •• 1 1
6
7

O, 1
O

O
1

1
O

1
O

1
1

1
1

1
O

O
1

1
O

8 1 1 O O 1 O 1 1 1 O
9 1
10 1

L...--

1
1

1
O

1
O

O
1

O
O

1
O

1
O

O
1 ~(

Fig. L Activity pattern ofthe flip-flops

Also we have tried ta estimate the activity of the flip
flops (A o) depending an the total number of flip-flops
(NFG), the number of flip-flops without activity (NFO),
the .number of the flip-flops from the group
consldered (g) and the number of the <Yiven c10cks

1::>

(no_clk), and the activity before the grouping (AT).

Ar == no clk+or calxNFT (1)
.'lLo..

Ac =no_clk+ t[no dk+gxor _COI(Nr.F lil(2)
1=1 g) J

!!.B:i..

(
J clk + f:i (N 1.'"')) (....)Ac == ~NFC + I no _ f. [g x ar _ col --;;- i .),

where ar _ co/(FF) mean OR function applied ta

those columns that corresponds ta FF.
Based on the 1ast file the flip-flops will be grouped
taking in account the activity patterns similarities
between flip-flops (the number of common transitions
and idle states too). The grouping technique is binary
tree algorithm based. This algorithrn starts by
grouping the tirst most alike two flip-flops, then the
next two, from the left ones and so on.

So, that we get the frrst level of the tree. In
the next stage we have ta put together each two flip
flops group from the frrst level and, sa on until there
are no possible groups ta do. For this stage we have
made a soft in Pascal that compare and make the
groups.

After we have created the tree we have to
interfere in the netlist file for stopping unnecessary
clocks (that is called clock gating). Starting from the
EDIF format of the netlist we turned it into a VHDL
format and we inserted the clock gating circuits that
for the tirst levellooks as is shown in the next figure:

Fig.2 Clock gating circuits module

This module is composed of two XOR gates (each
one being applied to iuput and output of one flip
flop), one OR gate applied to the outputs ofthe XOR
gates, one flip-flop, and one AND gate. The XOR
gate will deCides ifthe flip-flop needs or no a clock to
change it output data. Practically the XOR gate will
compare the data from output of flip-flop with the
input data. V/hen those data are different then the
XOR gate will point this to the OR gate that will
totalize all this "c1ocks needs" and together with AND
gate will give to the flip-flop considered an "ideal
c!ock". One ofthe input ofthe AND gate will be the
"initial c1ock" and the other will be the "command"
for clock needing. The role of the flip-flop from the
module is ta assurance the synchronization ofthe new
c\ock with the old one.
With tIle VHDL format for the module ofbinary tree:

LI G 1_ OR : work.componcnts.OR2 port

map(O =:,> LlGl_OR__OUT, IO => flip-flops

6_AND_OUT, II => flip-Oops 9_AND_OUT);

- - --

LI G 1 FD: work.components.FD port map(
D => LIGI_OR_OUT, C => IN_CLK_BUF, Q =>
LI G 1 FD OUT);

LIG1-AND : work.components.AND2 port map(
10 => LlGl_FD_OUT, Il => IN_CLK_BUF, °=>
LI G 1 CLK OUT);

FF6 XOR: work.components.XOR2 port map(
0=> FF6 XOR OUT, 10 => IRO COMP nx144, Il
=> RID_2);

FF6 AND: work.components.AND2 port map(
0=> FF6_AND_OUT, IO => FF6_XOR_OUT, Il =>
clock_id);

FF9 XOR: work.components.xOR2 port map(
0=> FF9_XOR_OUT, IO => IFD8_Q_7, Il =>
lN_PORT_7_int);

For providing the clocks to the upper levels
we have inserted circuits as those shown in the next
figure:

~]
L,:y

.....c
Fig.3 Clock gating circuit module applied to three levels ofthe

binary tree

We also tried to fmd a grouping algorithm, a
possible one is to analyze all possible the flip-flops
combinations and to fmd the group with the maximum
common transitions. In this group could be possible to
include others flip-flops s that have at least the same
transitions eventually some more 10% this way some
flip-flops s will get unu sed clocks. But this seems to
be a very tedious method because of the large
combinations number:

n-l I
n.L (4)

k=2 k!(n k)1

In our case for 12 flip-flops, there are 4082 possible
combinations, but for 100 flip-flops there are 1.5'1030

possible combinations.
Even if, each flip-flops will work getting the ideal
c1ock, other flip-flops are used to share the c10ck
signal for each pair of flip-flops and the clock saving
disappear.
The circuits are described in VHDL.

After we introduced the clock gating circuits
we have checked again the tested circuit using a test
bench made after functional simulation. The circuit
behavior was the same.

Another soft was developed for automate
insertion of the clock gating circuits.

55

The powcr optimizer software resolves the
power dissipation in the flip-flops by rerouting. the
clock signal to the flip-flops in order to give them the
clock only when nceded (i.e. when the input data of
the flip-flop changes).

Before you start the software, you need the
following two files: the VHDL file containing the
structural description of your circuit and the activity
pattern file, which contains the activity patterns of
your flip-flops.

As you can see in fig. 4, the program has
three main areas

FigA GUI ofthe program

No. 1 is the main entry area where you can specify:
a) the technology, by clicking on the

, technology selection button;
b) the initial VHDL file;
c) the activity pattern file (obtained as a

result of the simulation, see previous
explanations);

d) the name and location of the output
(optimized VHDL file)

The area no. 2 is the editor window where you can see
the input files and the results.
After the simulation has ended, beside the optimized
VHDL file, you can see as results of the optimization
the following report files (Reports Menu):

- Combination method: you can see how the
flip-flops were grouped;
Flip - flop entries: the flip-flops that appear
in the initial VHDL file;
Signals: the signals from the optimized clock
tree;
Components: the optimized clock tree
components;
Final VHDL file: the linal optimized VHDL
file;
Final VHDL file: the rinal optimi?Cd VHDL
file;
Activity: misc. rcports conceming the
optimization;
All Final Results: dbplays aIi the report files
one after the other (Iakes alI the result files
from the working din.:ctory).

As for tÎle other buttons you can see in area no. 3, you
will find the explanation t)f their functions in the
foIlowing picture:

Fig.5 Buttons explanation ofthe GUI

Charts provided in Xilinx data sheets provide
dynamic power consumption values for typical design
elements (for example, the power consumption of one
XC4000E CLB flip-flop driving its neighbor and nine
lines of interconnect is 0.2m W per million transitions
per second); these can be used to derive useful power
consumption estimates, but also means that we try to
reduce 20%-50% that is 0.04-0.1 mW for one flip
flop. That explain the result that we get for our
experiment made up from 12 flip-flops before
optimization and 23 flip-flops after that. Here is the
power consumption report for the original project at
10 MHz and 100 MHz:

III. CONCLUSION AND FURTHER WORK

In this paper we have proposed an approach
for the construction of activity driven cIock tree, with
the objective of minimizing power consumption. We
have developed algorithms that solve the problems of
clock tree construction and gate insertion into the
clock tree, while minimizing power consumption.

If in the initial circuit the flip-flops (12)
carried out 8088 transitions, in the new circuit where
we applied clock gating circuits, the flip-flops (now
23 flip-flops, more than the first time) carried out
4186 transitions that mean to save almost 50%. The
initial 12 flip-flops have got the ideal clocks (1373)
the rest of the transitions are carried out by the
additional flip-flops (Il) used for clock gating.
In the next stage we applied the same principle but
this tÎme each group will contain three flip-flops.
From the functional point of view the results was the
same but, "the saved clock" was grater than before: it
was used 18 flip-flops with 2934 transitions. During
n~xt stage we will reapply our algorithms over a
blgger project. We have to find which 1S the optimum
flip-flops number that has to be grouped. We a1so
have to finish the soft that automatcs the grouping
process with respect to the activity pattern obtained
ţTom test vectors indifferently by the flip-flops
number and groups' size.

REFERENCES

[1] E. Tellez. A. Farrah and M. Sarrafzadeh, "Activity-dri....en
clock deSign for low power circI/ils," in Prac lEEE ICCAD.
San lase, pp.62-65, Nov. 1995.
[2] Amir H. Farrahi, Chunhong Chen, AnJ...\lf Srivastava,
Gustavo Tellez, and Majid Sarrafzadeh, ··Activity-Drzwn
Clock Design", IEEE Trans. Computer-Aided Design, voI. 20.
no. 6, pp 705,june2001
[3] Dcnnis lAI. Huang, Andrew B. Kahng and Chung-Wen
Albert 	 Tsao, "On the Bounded-Skew Clock and Steiner

32ndRouting Prohlems", ACM/IEEE Design Automation
Conference 1995.
[4] lan B!)l1jolfson and Zeljko Zilic, ·'FPGA Clock
lvfanagement for Low Power", Prac. Of lot. Symposium on
FPGAs, FPGA 2000, Montcrrey, CA Feb. 2000.
(5] E. G. Fricdman, "Clock Distribulion Design in IIS1
Circuits - an Overview" Procecdim,s of IEEE International
Symposium 00 Circuits and Syste~s. pp. 1475-1478, l\lay
1993.
[6] E. G. Friedman (Ed.), Clock Distribulion Nelworks /Il

VLSI Circuits and Systems, 525 pp., Piscataway, New
Jersey:IEEE Press, 1995.

